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Abstract

In this report, I describe the Bayesian approach to machine learn-
ing, detailing how it treats statistical parameters as random variables
and uses Bayes’ rule to compute posterior distributions. I explain ba-
sic techniques like Maximum Likelihood Estimation (MLE) and intro-
duce complex methods such as Variational Inference and Markov Chain
Monte Carlo (MCMC) sampling. Variational Inference is highlighted for
its performance and upgrade over Frequentist methods, while MCMC is
presented as the gold standard for posterior sampling.
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1 Probability Theory

1.1 Taxonomy of distributions

For two random variables X and Y ,

• P (X and Y ) or P (X,Y ) is called the joint distribution of X and Y . It
gives the probability (density) of (X,Y ) taking on a pair of values (x, y).

• P (X) is called the marginal distribution of X. It gives the probability of
X taking on a value x, given that you know nothing about Y .

• P (X given Y ) or P (X |Y ) is called the conditional distribution of X given
Y . If gives the probability of X taking on a value x given that you know
Y takes on a value y.

1.2 Identities

There are three important identities that relate the joint, marginal and condi-
tional distributions:

P (X,Y ) = P (Y,X) Reflexivity (1)

P (X,Y ) = P (X |Y )P (Y ) Chain Rule (2)

P (X) =

∫
P (X |Y )P (Y ) dY Marginalization (3)

We can use the chain rule to derive another important identity. By reflexivity
and the chain rule we have

P (X |Y )P (Y ) = P (X,Y ) = P (Y,X) = P (Y |X)P (X)

Dividing through by P (Y ) we obtain

P (X |Y ) =
P (Y |X)P (X)

P (Y )
Bayes’ Rule (4)

We will also sometimes use the expected value of a distribution:

EP(X)[f(X)] =

∫
f(X)P (X) dX Expected Value (5)

≈ 1

N

N∑
i=1

f(xi), xi
iid∼ P (X) Numerical Expectation (6)

Notice that therefore P (X) = EP(Y )[P (X |Y )], and we can estimate P (X) by
numerical expectation.

Please use this page as a reference for the rest of the talk.
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2 Frequentism vs Bayesianism

2.1 Frequentism

Sometime we are interested in finding out a statistic. The canonical example is
finding the average height of people.

The simplest way to do this is to get a big sample of people and measure
their heights, giving us a dataset X = {xi}Ni=1. We can then easily calculate the
average height of the people in the sample:

x̄ =
1

N

N∑
i=1

xi. (7)

Is this good enough? There are 8 billion people in the world. Probably we
don’t have all 8 billion in our sample. Even if our sample is representative, it’s
unlikely our x̄ will be exactly equal to the true average height of the population.
We can make some assumptions about how height is distributed, and in doing so
calculate the expected error between the sample average and the true average.
We can also increase our sample size: probability theory tells us that the larger
our sample is, the closer our estimate of the mean will be to the true mean.

Is that good enough? Suppose we actually do have all 8 billion people in our

sample. Is x̄ = 1
8×109

∑8×109

i=1 xi “the average height of a person”?
If you said yes, you are a Frequentist at heart. What would it even mean for

the average height of all the people in the world not to be “the average height
of a person”?

2.2 Bayesianism

Thought experiment: someone is born. Once they’ve finished growing, how tall
will they be?

Most people would say “probably around average height”. But if you define
“average height” as the actual average height of all the people in the world, that
becomes a circular answer.

The Bayesian says “there is something we are gesturing at when we say ‘av-
erage height’ that is distinct from the actual population average. It’s something
like ‘the height we expect a person to be’.” Call this µ to distinguish it from
x̄, the population average. The Bayesian says that this µ is itself a random
variable, which cannot be observed; we can only estimate it through its effects
on the observable data variables xi, the actual heights of people. This gives rise
to a huge joint distribution

P (µ, x1, x2, . . . , xN ) = P (µ,X) . (8)

We can use Bayes’ Rule (4) to break this joint into its component parts:

P (µ |X) =
P (X |µ)P (µ)

P (X)
(9)
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• P (µ |X) is called the posterior distribution over µ.

• P (X |µ) is called the conditional likelihood of the data given µ.

• P (µ) is called the prior on µ.

• P (X) is called the marginal likelihood of the data.

P (µ |X) is the distribution of most interest to us: it tells us how tall we should
expect a person to be, given how tall the people in our sample are. P (X |µ) and
P (µ) are modelling choices—we are free to pick an appropriate and convenient
family of distributions for them.

P (X) is usually thorny. We can define it using (3) as

P (X) =

∫
P (X |µ)P (µ) dµ (10)

but that integral is often intractable. Fortunately, notice that P (X) does not
depend on µ; it plays the role of a normalizing constant. In situations where we
only care about the relative probabilities of different values of µ, we can write

P (µ |X) =
1

P (X)
P (X |µ)P (µ) ,

∝ P (X |µ)P (µ) .

(11)

which means we only have to deal with quantities we can easily calculate.
For a suitable choice of likelihood, we recover x̄ = EP(µ |X)[µ]. That is, the

Frequentist population average returns as the expected value of average height
given the data. We also say that the posterior concentrates at x̄. But with this
rich Bayesian framing, we can also talk about other quantities. For instance,
the variance VarP(µ |X)[µ] measures our uncertainty in µ.

Often we are most interested in, you know, predicting the height of an unseen
person. For this we use the posterior predictive distribution

P (x′ |X) =

∫
P (x′ |µ)P (µ |X) dµ (12)

= EP(µ |X)[P (x′ |µ)] (13)

A common point of confusion is that there is no such thing as the “true
value” of µ. This took me four years of undergrad and two years of professional
experience in Bayesian machine learning to truly understand.
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3 Again, but for Machine Learning

3.1 Frequentism

In a standard machine learning problem, we have a dataset D = {(xi, yi)}Ni=1

and our task is to recover an unknown function y = f(x). We come up with
a function class ŷ = gθ(x), which is usually a neural network. Now our task
becomes finding θ⋆ such that gθ⋆ = f . By coming up with a loss function L(y, ŷ),
we can turn this into an optimization problem:

θ⋆ = argmin
θ

N∑
i=1

L(yi, gθ(xi)) (14)

We have many choices for solving this optimization problem, but usually we
solve it by gradient descent. Let θ0 ∼ N(0, 1), then

θn+1 = θn − λ
∂

∂θ

[
N∑
i=1

L(yi, gθ(xi))

]∣∣∣∣∣
θ=θn

(15)

This is “frequentist” machine learning. We took a sample D of a population,
then calculated the exact value of a statistic θ⋆ for that population.

3.2 Bayesianism

When all you have is a hammer, everything looks like a nail. One day, a Bayesian
discovered machine learning and relabelled all its parts.

As before, we start by treating the statistic of interest θ as a random variable.
Then we use Bayes’ rule (4) to decompose the joint distribution:

P (θ |D) =
P (D | θ)P (θ)

P (D)
(16)

This requires giving probabilistic interpretations of each component of the ma-
chine learning problem.

• The network ŷ = gθ(x) becomes the predictive distribution P (y |x, θ).
This distribution is defined in terms of the loss:

P (y |x, θ) ∝ e−L(y,gθ(x)), L(y, gθ(x)) = − logP (y |x, θ) (17)

For some common loss functions this distribution has a nice form. The L2
loss (y − ŷ)2 becomes a Gaussian distribution N(ŷ, 1). The cross-entropy
loss becomes a categorical distribution.

• Since log ab = log a + log b, the log likelihood of the dataset is just the
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negative sum of the loss plus a term constant in θ

P (D | θ) =
N∏
i=1

P (yi |xi, θ)P (xi) (18)

logP (D | θ) =
N∑
i=1

[logP (yi |xi, θ) + logP (xi)] (19)

= −
N∑
i=1

L(yi, gθ(xi)) +

N∑
i=1

logP (xi) (20)

• The prior P (θ) is just the distribution from which we draw the initial
parameters for gradient descent: if θ0 ∼ N(0, 1) then P (θ) = N(0, 1).

• The marginal likelihood P (D) we can recover by integrating:

P (D) =

∫
P (D | θ)P (θ) dθ (21)

Now our machine learning problem becomes characterizing the posterior dis-
tribution. This is a powerful reframing that lets you ask a bunch of interesting
questions. For instance, there are often multiple functions y = f(x) that are
consistent with your dataset. Instead of asking which one is “the true function”,
you can ask which ones are relatively more or less likely given the data you’ve
observed.

In machine learning, we often don’t care about the particular value of θ at
all! Instead we care about making good predictions y′ on unseen inputs x′. One
big benefit of the Bayesian framing is that by characterising the posterior, we
get confidence estimates for free! Compare the Frequentist approach

ŷ′ = gθ⋆(x′) (22)

to the Bayesian approach

P (y′ |x′, D) = EP(θ |D)[P (y′ |x′, θ)] (23)

Immediately, we can ask not just for the expected prediction ŷ = EP(y′ | x′,D)[y
′]

but also the confidence P (y′ = ŷ |x′, D) and the variance VarP(y′ | x′,D)[y
′].
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4 The 2023 Bayesian ML Meta

How do we actually characterize the posterior? The dream would be to find a
simple closed form for P (θ |D) or P (y′ |x′, D). Then we could easily calculate
the expected prediction, confidence and variance.

Unfortunately, the distribution

P (θ |D) =
1

Z
e−

∑N
i=1 L(yi,gθ(xi))

N∏
i=1

P (xi)P (θ) (24)

Z =

∫
e−

∑N
i=1 L(yi,gθ(xi))

N∏
i=1

P (xi)P (θ) dθ (25)

usually cannot be simplified, and doesn’t fit any well-known distribution. We
cannot easily calculate the mean or the variance, and we can’t straightforwardly
draw samples the way we can for a normal distribution or a uniform distribution.

The one thing we can do is calculate the log posterior probability of a given
set of weights θ:

logP (θ |D) = −
N∑
i=1

L(yi, gθ(xi)) + logP (θ) +

N∑
i=1

logP (xi)− logZ (26)

Let’s see how we bootstrap from there!

4.1 Maximum Likelihood Estimation

The important quantities we want to calculate are all statistics of the posterior
predictive distribution P (y′ |x′, D). Remember that the posterior predictive
distribution is given by an expectation over θ:

P (y′ |x′, D) = EP(θ |D)[P (y′ |x′, θ)] . (27)

We can approximate this numerically using sampling as in (6):

P (y′ |x′, D) ≈ 1

M

M∑
j=1

P (y′ |x′, θj) , θj
idd∼ P (θ |D) . (28)

We can approximate it really badly using a single sample

P (y′ |x′, D) ≈ P (y′ |x′, θ) , θ ∼ P (θ |D) (29)

and if we’re only going to use one sample, it may as well be the mode θ⋆, where

θ⋆ = argmax
θ

P (θ |D) (30)
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Finding the mode is fairly straightforward. Since log is monotonic,

θ⋆ = argmax
θ

P (θ |D) (31)

= argmax
θ

logP (θ |D) (32)

= argmax
θ

[
−

N∑
i=1

L(yi, gθ(xi)) + logP (θ) +

N∑
i=1

logP (xi)− logZ

]
. (33)

Because addition and subtraction of constants is monotonic, we can drop the
terms that don’t vary with θ, leaving us with

θ⋆ = argmax
θ

[
−

N∑
i=1

L(yi, gθ(xi)) + logP (θ)

]
(34)

= argmin
θ

[
N∑
i=1

L(yi, gθ(xi))− logP (θ)

]
(35)

Notice how similar this is to the Frequentist optimization objective (14). The
only difference is we’ve added a term− logP (θ) saying that the weights shouldn’t
stray too far from the prior. In practice we often set the prior to θ ∼ N(0, 1),
in which case logP (θ) ∝ −∥θ∥22:

θ⋆ = argmin
θ

[
N∑
i=1

L(yi, gθ(xi)) + ∥θ∥22

]
(36)

i.e. Bayesian maximum likelihood estimation with a Gaussian prior on the
weights is equivalent to Frequentist learning with L2 regularization.

We might also assume an improper uninformative prior on the weights,
P (θ) ∝ 1. In that case the prior term also becomes constant in θ and Bayesian
maximum likelihood estimation becomes exactly equivalent to Frequentist learn-
ing:

θ⋆ = argmin
θ

N∑
i=1

L(yi, gθ(xi)) (37)

Once we have our point estimate of the posterior θ⋆, we can write

P (y′ |x′, D) ≈ P (y′ |x′, θ⋆) (38)

and read off statistics like the mean, variance and confidence from the model
distribution.

4.2 Variational Inference

Okay, that’s a neat trick. But if all we wanted to do was get a point estimate
for the mode of the posterior, we may as well have stayed in the Frequentist
paradigm and not learned all these statistics. We want more!

8



Bayesian machine learning would be easy if the posterior distribution had a
convenient closed form like N(µ, σ2). What if we just. . . pretended that it did?

In variational inference, we decide on a variational distribution Qφ(θ) with
a convenient closed form, and the goal becomes to find parameters φ for this
distribution such that Qφ(θ) is as close as possible to P (θ |D). Usually we do
this by minimizing the Kullback-Liebler divergence (the KL divergence):

KL(Q ∥P ) =

∫
Q(x) log

Q(x)

P (x)
dx (39)

Why the KL divergence in particular? There is a lot of probability theory that
backs the KL as the sensible measure of divergence to minimize, but really we
pick it because it generates a convenient optimization problem.

Recall from (5) that any integral over a probability distribution is an ex-
pected value:

KL(Q ∥P ) = EQ(x)[logQ(x)− logP (x)] (40)

Specializing that to our setting we get

KL(Qφ(θ) ∥P (θ |D)) = EQφ(θ)[logQφ(θ)− logP (θ |D)] . (41)

= EQφ(θ)

[
logQφ(θ) +

N∑
i=1

L(yi, gθ(xi))− logP (θ)−
N∑
i=1

logP (xi) + logZ

]
(42)

We want to find φ⋆ that minimizes the KL divergence:

φ⋆ = argmin
φ

KL(Qφ(θ) ∥P (θ |D)) (43)

A neat property of expectation EP(·)[·] is that it distributes over addition, so we
can write

KL(Qφ(θ) ∥P (θ |D)) = EQφ(θ)[logQφ(θ)]

+ EQφ(θ)

[
N∑
i=1

L(yi, gθ(xi))

]
− EQφ(θ)[logP (θ)]

− EQφ(θ)

[
N∑
i=1

logP (xi)

]
+ EQφ(θ)[logZ]

(44)

For optimization purposes we can ignore the terms that are constant in φ, i.e.
the expectations that do not contain a θ term. After rearranging, that gives us

φ⋆ = argmin
φ

[
EQφ(θ)

[
N∑
i=1

L(yi, gθ(xi))− logP (θ) + logQφ(θ)

]]
(45)
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We get to choose the form of the variational distribution Qφ(θ) such that it’s
easy to sample from (indeed, that was the whole point). We can therefore easily
approximate the expectation numerically (6):

φ⋆ = argmin
φ

 1

M

M∑
j=1

[
N∑
i=1

L(yi, gθj (xi))− logP (θj) + logQφ(θj)

] , (46)

with θj
iid∼ Qφ(θ). How big should the number of samples M be? In theory M

should be large, so we can get the best possible estimate of the KL divergence.
But for each sample θi we have to do a forward pass of the model for every
example in our training data to calculate the sum loss

∑N
i=1 L(yi, gθj (xi)). That

takes a lot of time, and time is money. So in practice we set M = 1, giving us

φ⋆ = argmin
φ

[
N∑
i=1

L(yi, gθ(xi))− logP (θ) + logQφ(θ)

]
(47)

with θ ∼ Qφ(θ). Now that’s an objective we can optimize by gradient descent!
Notice how similar (47) is to the Frequentist optimization objective (14) and

maximum likelihood estimation (35). Maximum likelihood estimation selects θ⋆

to minimize the loss, while adding a term − logP (θ) representing how far the
parameters have diverged from the prior. If we rearrange (47) slightly we get

φ⋆ = argmin
φ

[
N∑
i=1

L(yi, gθ(xi)) + EQφ(θ)[logQφ(θ)− logP (θ)]

]
(48)

φ⋆ = argmin
φ

[
N∑
i=1

L(yi, gθ(xi)) + KL(Qφ(θ) ∥P (θ))

]
. (49)

i.e. variational inference selects φ⋆ to minimize the expected loss while also
minimizing the KL-divergence of the variational distribution Qφ(θ) from the
prior P (θ).

Variational inference is very powerful! Once we have Qφ⋆(θ) ≈ P (θ |D), we
can use it to generate samples from the posterior:

y′ ∼ P (y′ |x′, D) = y′ ∼ P (y′ |x′, θ) , θ ∼ P (θ |D) (50)

≈ y′j ∼ P (y′ |x′, θ) , θ ∼ Qφ⋆(θ) (51)

We can use these samples to easily calculate the mean and variance of the
prediction. We can also easily calculate the confidence:

P (y′ |x′, D) ≈ EQφ⋆(θ)[P (y′ |x′, θ)] . (52)

This is much better than maxmimum likelihood estimation, which only gives us
gives us access to the posterior mode.

Variational inference is a great technique. It’s high-performance, and a
straight upgrade on Frequentist learning. But it requires making strong as-
sumptions about the form of the posterior.
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For instance, we often assume a Gaussian prior on the weights, because
it’s computationally convenient. Many machine learning libraries already set
the default weights using a Gaussian distribution. We might expect that the
posterior has the same form as the prior, and set our variational distribution
Qφ(θ) = N(φ0, φ1). This is very tempting, but hamstrings our analysis. Gaus-
sian distributions are unimodal - they only have one peak. Remember ages ago
we said there there might be many different functions compatible with your
training data? A Gaussian distribution can only concentrate in one place; it
can’t concentrate at two meaningfully different functions. Much of the work in
modern variational inference is in defining expressive variational families that
can capture all the nuances of the true posterior.

4.3 MCMC / Posterior Sampling

What should you do if variational inference isn’t accurate enough for you?
If you really want direct samples from the posterior, there is a simple algo-

rithm that can get you them. Notice that

P (θ |D) =
P (θ |D)

P (θ)
P (θ) . (53)

i.e. we can get from one distribution to the other by relative reweighting. That
gives rise to an algorithm called importance sampling :

1. Sample {θj}Nj=1 from the prior P (θ)

2. For each sample θj :

(a) Calculate qj = P (θ)

(b) Calculate pj = P (θ = θj |D)

3. Sample θ from {θj}Nj=1 according to the relative weights
pj

qj
.

This algorithm sucks. You usually have to sample from the prior many, many
times before you find a part of weight space where the posterior concentrates,
and calculating P (θ |D) is difficult and expensive.

Fortunately we can improve this algorithm by turning our random samples
into a directed search, seeking areas of low loss / high posterior concentration.
This gives rise to a family of methods called Markov Chain Monte Carlo or
MCMC. The simplest such algorithm is Metropolis-Hastings.

In Metropolis-Hastings, we pick a proposal distribution P (θ′ | θ) which can
be anything we like, and so is usually a Gaussian N(θ, σ2). Then we:

1. Pick an initial parameter θ0 from the prior P (θ). Set j = 0.

2. Pick a new parameter θ? from the proposal distribution P (θ? | θj).

3. Calculate the acceptance ratio

α =
P (θ = θ? |D)

P (θ = θj |D)
(54)
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4. With probability α, let θj+1 = θ?, jumping to the proposed parameter.
Otherwise, let θj+1 = θj , remaining where you are.

5. Set j ← j + 1, go to 2.

It can be shown (and we might, if we have time, show it) that the process
(θ0, θ1, . . . ) is a Markov chain with limit distribution P (θ |D). In computer
science, a Monte Carlo algorithm has fixed running time but gives random
answers (compared to a Las Vegas algorithm which gives correct answers but
whose running time is random). Hence the name ”Markov Chain Monte Carlo”.

Metropolis-Hastings makes two big improvements on importance sampling:
it converges much faster, and it only requires us to compute the ratio of prob-
ability densities of parameters:

log
P (θ = θ? |D)

P (θ = θj |D)
= logP (θ = θ? |D)− logP (θ = θj |D) (55)

= −
N∑
i=1

L(yi, gθ?(xi)) + logP (θ?) +
��

����N∑
i=1

logP (xi)−�
��logZ

+

N∑
i=1

L(yi, gθj (xi))− logP (θi)−
��

����N∑
i=1

logP (xi) +���logZ (56)

= log
P (θ?)

P (θi)
−

N∑
i=1

[
L(yi, gθ?(xi))− L(yi, gθj (xi))

]
(57)

= log
P (θ?)

P (θi)
−N × EP(x,y)

[
L(y, gθ?(x))− L(y, gθj (x))

]
(58)

Notice that this lets us avoid computing Z, an intractable integral, and P (xi),
the unobservable true data generating distribution. All that remains is the prior
log odds ratio and the expected difference in loss, both of which are easy and
cheap.

In exchange for being feasible in practice, Metropolis-Hastings gives us one
drawback: correlation. We sample by taking a random walk through parameter
space, meaning that adjacent samples from the chain are highly correlated. We
get around this using burn in and subsampling. To get representative samples
from the posterior:

• Sample θ0 from the prior P (θ).

• Burn in the chain (θ0, θ1, . . . ) by generating and throwing away thousands
of samples. This allows the search process to find a region of high posterior
concentration.

• Let, say, θ10000 be the first posterior sample.

• Generate and throw away another thousand samples from the chain. This
diminishes the correlation between posterior samples.
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• Let θ11000 by the next posterior sample.

• Lather, rinse, repeat as needed.

Research in MCMC sampling mostly revolves around better choices for the
proposal distribution. We want the search process to seek areas of high posterior
concentration, and the posterior concentrates near parameters with low loss.
Hence, we can use the gradient of the loss to tell us in which direction we
should step. Using Hamiltonian dynamics gives us Hamiltonian Monte Carlo or
HMC. This is the gold standard in posterior sampling.

5 Concluding thoughts

There are two reasons you might do Bayesian machine learning.

1. Bayesian machine learning is a family of techniques aimed atmaking richer
predictions. Point estimates aren’t enough for you; you have some business
reason for getting well-calibrated uncertainty estimates. Perhaps you’re
doing online learning, and you want to target data collection to areas where
the model is uncertain. Bayesian machine learning is more expensive, but
the benefits are worth the costs.

2. Bayes is good, you should do a Bayes.

The second reason is actually more sensible than you’d think. There is a sense
in which Bayesian machine learning is “the real machine learning”. Nobody
knew why L2 regularization worked until Bayesians rephrased it as placing a
Gaussian prior on the weights, and that rephrasing opened a rich vein of theory.
The central question in ML research is why neural networks generalize well,
and the most compelling answers to that question, like SLT, have their roots in
Bayesian statistics.

A lot of learning is knowing that there are things to be known. I hope having
read this document, the next time you encounter a phrase like variational family
or MCMC with NUTS sampling, you think back to this session, remember the
shape of the ideas, and know that you could learn the details.
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